925 research outputs found

    Superlattice Structures of Graphene based Nanoribbons

    Get PDF
    Based on first-principles calculations we predict that periodically repeated junctions of armchair graphene nanoribbons of different widths form superlattice structures. In these superlattice heterostructures the width and the energy gap are modulated in real space and specific states are confined in certain segments. Orientation of constituent nanoribbons, their width and length, the symmetry of the junction are the structural parameters to engineer electronic properties of these quantum structures. Not only the size modulation, but also composition modulation, such as periodically repeated, commensurate heterojunctions of BN and graphene honeycomb nanoribbons result in a multiple quantum well structure. We showed that these graphene based quantum structures can introduce novel concepts to design nanodevices.Comment: amended versio

    Atomic current in optical lattices: Esaki-Tsu equation revisited

    Full text link
    The paper discusses the master equation approach to derivation of the Esaki-Tsu equation for drift current. It is shown that the relaxation term in the master equation can be identified by measuring the velocity distribution of the carriers. We also show that the standard form of the relaxation term, used earlier to derive Esaki-Tsu equation, predicts unphysical velocity distribution and suggest a more elaborated relaxation term, which is argued to correctly capture the effect of bosonic bath in experiments on atomic current in optical lattices.Comment: 4 page

    Delocalization induced by low-frequency driving in disordered superlattices

    Get PDF
    We study the localization properties of disordered semiconductor superlattices driven by ac-fields. The localization length of the electrons in the superlattice increases when the frequency of the driving field is smaller than the miniband width. We show that there is an optimal value of the amplitude of the driving field for which the localization length of the system is maximal. This maximum localization length increases with the inverse of the driving frequency.Comment: 5 pages, 4 figure

    Snell's law for surface electrons: Refraction of an electron gas imaged in real space

    Get PDF
    On NaCl(100)/Cu(111) an interface state band is observed that descends from the surface-state band of the clean copper surface. This band exhibits a Moire-pattern-induced one-dimensional band gap, which is accompanied by strong standing-wave patterns, as revealed in low-temperature scanning tunneling microscopy images. At NaCl island step edges, one can directly see the refraction of these standing waves, which obey Snell's refraction law.Comment: 4 pages, 4 figure

    Bloch Oscillation under a Bichromatic Laser: Quasi-Miniband Formation, Collapse, and Dynamical Delocalization and Localization

    Full text link
    A novel DC and AC driving configuration is proposed for semiconductor superlattices, in which the THz AC driving is provided by an intense bichromatic cw laser. The two components of the laser, usually in the visible light range, are near but not exactly resonant with interband Wannier-Stark transitions, and their frequency difference equals the Wannier-Stark ladder spacing. Multi-photon processes with the intermediate states in the conduction (valence) band cause dynamical delocalization and localization of valence (conduction) electrons, and the corresponding formation and collapse of the quasi-minibands.Comment: 4 pages, 3 figure

    Electron magnetotransport in GaAs/AlGaAs superlattices with weak and strong inter-well coupling

    Full text link
    We report on magnetotransport measurements in two MBE-grown GaAs/AlGaAs superlattices formed by wide and narrow quantum wells and thin Si-doped barriers subject to tilted magnetic fields. It has been shown that illumination of the strongly coupled superlattice with narrow wells leads to reduction of its dimensionality from the 3D to 2D. The illumination-induced transition is revealed by remarkable change of magnetoresistance curves as compared to those measured before illumination. The experimental data along with tight-binding model calculations indicate that the illumination not only enhances the electron concentration but also suppresses the electron tunneling through the barriers.Comment: 3 pages, 3 figures, elsart/PHYEAUTH macros; presented on the LDSD 2007 Conference in the Caribbean Archipelago San Andres, Colombia. To be published as a special issue of Microelectronics Journal (Elsevier

    Photoassisted sequential resonant tunneling through superlattices

    Full text link
    We have analyzed theoretically the photoassisted tunneling current through a superlattice in the presence of an AC potential. For that purpose we have developed a new model to calculate the sequential resonant currrent trhough a superlattice based in the TRansfer Hamiltonian Method. The tunneling current presents new features due to new effective tunneling chanels coming from the photoside bands induced by the AC field. Our theoretical results are in good agreement with the available experimental evidence.Comment: Revtex 3.0 4 pages, 4 figures uuencoded compressed tar-fil

    Bloch oscillations in Fermi gases

    Full text link
    The possibility of Bloch oscillations for a degenerate and superfluid Fermi gas of atoms in an optical lattice is considered. For a one-component degenerate gas the oscillations are suppressed for high temperatures and band fillings. For a two-component gas the Landau criterion is used for specifying the regime where Bloch oscillations of the superfluid may be observed. We show how the amplitude of Bloch oscillations varies along the BCS-BEC crossover.Comment: 4 pages, 2 figures. explanations adde
    corecore